蜜桃成人365av_91精品在线观_久久久久久网址_日韩免费精品视频

咨詢電話:13699145010
article技術(shù)文章
首頁 > 技術(shù)文章 > 什么是介電常數(shù)、關(guān)于介電常數(shù)的儀器

什么是介電常數(shù)、關(guān)于介電常數(shù)的儀器

更新時間:2023-09-18      點(diǎn)擊次數(shù):2148

介電性能:

中航時代ZJD-87 (1)_副本.jpg


1.1介電常數(shù)

介電常數(shù)反映了介質(zhì)儲存電能的能力,影響因素包括結(jié)構(gòu)因素及其他因素。其中,結(jié)構(gòu)因素由電子極化、原子極化、取向極化和界面極化組成。其他因素有溫度、濕度、頻率等。根據(jù)Clausius-Mosotti關(guān)系可推導(dǎo)出介電常數(shù)與自由體積、極化之間的關(guān)系,如式(2)和(3)所示。

image.png 

式(2)和(3)中:ε介電常數(shù);αavVvdw為基團(tuán)的體積極化;Vf為自由體積分?jǐn)?shù);Vvdw為范德華體積,Vvdw=Vw/NA,Vw為范德華摩爾體積;ρ為密度;NA為阿伏伽德羅常數(shù);αav是平均分子極化率;M為分子量;Kp為分子堆積系數(shù)。由式(3)可知,可以從兩個方面降低介電常數(shù)①減少基團(tuán)的體積極化作用;②增大薄膜的自由體積分?jǐn)?shù)。而提高介電常數(shù)的方法通常從增強(qiáng)分子極性的角度出發(fā),在聚合物鏈中引入極性大的基團(tuán),或?qū)?dǎo)電顆粒引入聚合物基體形成復(fù)合膜(例如聚合物/金屬、聚合物/碳納米管和聚合物/碳纖維等),或者引入具有高介電常數(shù)的陶瓷顆粒(例如鈦酸鍶鋇(BST)、鈦酸鋇(BT)、鋯鈦酸鋇鈣(BZT-BCT)和鈦酸鈣銅(CCTO等)以形成共混膜。

 

1.2介質(zhì)損耗因數(shù)

在外電場的作用下,電介質(zhì)將部分電能轉(zhuǎn)化為熱能的物理過程,稱為介質(zhì)損耗因數(shù),常用tanδ表示。材料結(jié)構(gòu)本身和外界環(huán)境(頻率、溫度、濕度等)是影響介質(zhì)損耗的主要因素。材料結(jié)構(gòu)本身的主要影響因素是偶極取向的極化,它對介電性能的影響很大。偶極的極性越大,介質(zhì)損耗就越大。極性基團(tuán)取向主要受聚合物鏈段運(yùn)動影響,因此高彈態(tài)聚合物的介質(zhì)損耗遠(yuǎn)遠(yuǎn)超過玻璃態(tài)聚合物。當(dāng)外加電場的頻率非常低時,極化頻率能夠跟上外部電場的改變,此時電導(dǎo)損耗起主導(dǎo)作用。但是當(dāng)外部中心電場的頻率逐步升高時,松弛極化在特定的頻率內(nèi)開始緊跟外部中心電場的改變,介質(zhì)損耗會隨著頻率的提高而進(jìn)一步增加;當(dāng)外加電場的頻率特別高時,介質(zhì)損耗隨頻率的提高而降低。溫度的影響也不可忽略,松弛極化隨著溫度的升高而逐步增加。當(dāng)工作環(huán)境中溫度比較低時,隨著工作環(huán)境中溫度的提高,介質(zhì)損耗會隨之升高;當(dāng)溫度持續(xù)升高,離子在磁場和空氣相互作用下的定向遷移會受到阻礙,此時電導(dǎo)損耗增加,導(dǎo)致介質(zhì)損耗增加。另外,介質(zhì)吸潮后,由于電導(dǎo)損耗和松弛損耗的增大,導(dǎo)致介質(zhì)損耗增加,這對多孔材料或極性電介質(zhì)來說,影響更為顯著。

2聚酰亞胺介電常數(shù)調(diào)控研究進(jìn)展

2.1低介電常數(shù)聚酰亞胺

2.1.1引入大體積側(cè)基

將大體積或者高位阻的基團(tuán)引入到聚酰亞胺分子結(jié)構(gòu)中能夠降低聚酰亞胺的介電常數(shù)LIY等合成了一系列PI/冠醚復(fù)合薄膜。結(jié)果表明,冠醚的引入形成了特殊的項(xiàng)鏈狀超分子結(jié)構(gòu)(如圖1(a)所示),增大了PI的自由體積。在聚合物主鏈中引入三萜烯結(jié)構(gòu)或不對稱二叔丁基也能降低聚合物的介電常數(shù)YTCHERN等以1,4-雙(4-氨基苯氧基)-2,6-二叔丁基苯與各種芳香族二酐縮聚成一系列叔丁基聚酰亞胺,這種新型PI具有低的介電常數(shù)2.74~2.92)。

在聚合物主鏈中引入柔性或扭曲的鏈節(jié)、大體積取代基和螺旋骨架也可降低介電常數(shù)。新型(E-N1(-4-氨基苯基)-N1(-4′(-2-苯基-2-(4′(三氟-甲基)聯(lián)苯-4-基)乙烯基)-聯(lián)苯-4-基)苯-1,4-二胺(FPTTDA)含有剛性非平面共軛結(jié)構(gòu)(如圖1(b)所示),該結(jié)構(gòu)可以增加空間位阻效應(yīng),減少聚合物分子鏈間的相互作用,從而使介電常數(shù)降低。LIUY等以FPTTDA和六氟異丙基鄰苯二甲酸酐(6FDA)為原料合成聚酰亞胺,制得薄膜的介電常數(shù)1.52(10kHz),介質(zhì)損耗因數(shù)在10-3數(shù)量級。

 

image.png 

2.1.2引入低極性基團(tuán)

由于C-F鍵的極化率低,偶極子小,因此將含氟基團(tuán)引入聚合物鏈可降低其介電常數(shù)YAOH等采用1,3-雙(2-三氟甲基-4-氨基苯氧基)-5-(2,3,4,5-四氟苯氧基)苯(6FAPB)和6FDA合成了一系列含氟聚酰亞胺,對應(yīng)膜的介電常數(shù)低至2.6(1MHz)。YANGSY等合成了一種氟化二酐(4,4′-[2,2,2-三氟-1-(3-三氟甲基-苯基)亞乙基]二鄰苯二甲酸酐(TFDA)),由其制得的含氟聚酰亞胺膜在1MHz下具有較低的介電常數(shù)2.75~3.02)及介質(zhì)損耗因數(shù)(0.00127~0.00450)。但是,當(dāng)聚酰亞胺的含氟量很高時,高溫下產(chǎn)生的HF會腐蝕膜材料,對其性能產(chǎn)生不利的影響[8]。SBABANZADEH等合成了一種新的硅氧烷二胺(結(jié)構(gòu)如圖2(a)所示),低極性的硅氧烷單元有效降低了聚酰亞胺的介電常數(shù)。QIH等合成了一種非對稱的二硅氧烷二胺(BATMS),將BATMS與4,4′-二氨基二苯醚(ODA)共聚制備得到的含硅氧烷聚酰亞胺(如圖2(b)所示)薄膜具有較低的介電常數(shù)25℃、1MHz條件下為2.48)。在PI主鏈中引入低極性脂肪族/脂環(huán)單元也是降低聚酰亞胺介電常數(shù)的有效方法之一。ASMATHERWS等合成了全脂聚酰亞胺雜化膜,其介電常數(shù)低至2.50。

2.1.3形成自具微孔

自具微孔聚合物材料(PIM)是一類基于分子鏈內(nèi)含有高度剛性扭曲結(jié)構(gòu)而產(chǎn)生的新型材料,其內(nèi)部具有直徑小于2nm的固有孔洞。在PI分子鏈中引入扭曲或螺旋中心(例如螺旋雙茚滿、螺旋芴、螺旋雙芴或三碟烯等結(jié)構(gòu))可顯著增加薄膜的自由體積,從而降低介電常數(shù)。ZHUANGY等[11]在聚酰亞胺主鏈中引入朝格爾堿基(TB),制備了系列含朝格爾堿基的自具微孔聚酰亞胺薄膜,它們具有較低的介電常數(shù)PI-TB-1的介電常數(shù)2.54)。

2.1.4引入納米孔

由于空氣的介電常數(shù)(ε)約為1.0,在聚酰亞胺基體材料中形成納米孔結(jié)構(gòu)是一種降低介電常數(shù)的有效方法。材料的ε可按公式(4)計(jì)算。ε=ε1x+ε0(1+x)(4)式(4)中:εε1、ε0分別為納米孔材料、基體材料和空氣的介電常數(shù);x為基體材料的體積分?jǐn)?shù)。由式(4)可知,在聚酰亞胺基體中引入熱不穩(wěn)定的組分,在高溫下通過物理或化學(xué)的方法將熱不穩(wěn)定的成分除去,形成納米孔洞,能有效地降低聚酰亞胺基體的介電常數(shù)。YJLEE等以雜化聚環(huán)氧乙烷-多面體低聚倍半硅氧烷(PEO-POSS)納米粒子為模板制備了納米多孔聚酰亞胺膜。薄膜中PEO-POSS納米顆粒通過熱氧化降解成為分散相,通過發(fā)泡工藝形成納米孔(直徑為10~40nm),使薄膜的介電常數(shù)3.25降低到2.25。CHENZ等通過原位氣泡拉伸方法制備多孔氟氧化石墨烯/聚酰亞胺(GFO/pPI)納米復(fù)合膜。引入的納米孔結(jié)構(gòu)不僅對PI的介電常數(shù)有影響,對介質(zhì)損耗也有影響。薄膜的介電常數(shù)從純PI的3.33降至GFO/pPI-2復(fù)合膜的2.29。純PI和納米復(fù)合膜的tanδ均低于0.03。其中,GFO/pPI-1復(fù)合膜在1.0MHz時的tanδ降至0.007。KRCARTER等由三嵌段共聚物制備成“納米泡沫",三嵌段共聚物的主要相是聚酰亞胺,次要相是熱不穩(wěn)定嵌段聚(環(huán)氧丙烷)。隨著納米孔的引入,聚酰亞胺薄膜的介電常數(shù)2.56降到2.27。VEYUDIN等[28]利用特殊的無機(jī)納米膜(水硅酸[Mg3Si2O5(OH)4]納米管(SNTs))制備聚酰亞胺納米復(fù)合薄膜,研究發(fā)現(xiàn),隨著SNT含量的增加,復(fù)合薄膜的介電常數(shù)下降。

此外,其他制備納米孔的方法也能降低介電常數(shù)。例如采用微乳液法制備具有夾心型多孔結(jié)構(gòu)的P、通過模板法制備納米孔等。但是,因材料內(nèi)部的納米孔洞尺寸受制備條件的影響較大,且制備過程會出現(xiàn)諸如主鏈斷裂、高分子難以脫除、孔徑不均、易產(chǎn)生應(yīng)力集中等缺陷,會降低聚酰亞胺的某些性能。

綜上所述,增大自由體積、引入低極性基團(tuán)、引入孔結(jié)構(gòu)等均能有效降低聚酰亞胺膜的介電常數(shù)。但引入低極性基團(tuán)對聚酰亞胺膜的介電常數(shù)降低效果有限;孔結(jié)構(gòu)引入還會導(dǎo)致膜的某些性能降低。為滿足聚酰亞胺在低介電材料領(lǐng)域的應(yīng)用,需要探索更為有效的方法來制備超低介電常數(shù)且性能優(yōu)良的聚酰亞胺薄膜。

 

2.2高介電常數(shù)聚酰亞胺

提高聚酰亞胺膜的介電常數(shù)主要通過引入高極性基團(tuán)及添加高介電常數(shù)填料來實(shí)現(xiàn)。

2.2.1引入高極性基團(tuán)

在聚合物鏈中引入腈基可提高其介電常數(shù)ITREUFELD等系統(tǒng)研究了一系列含有高極性丁腈的PI薄膜。研究發(fā)現(xiàn),在PI結(jié)構(gòu)中加入腈基(CN)偶極子可以提高介電常數(shù)。另外,增加結(jié)構(gòu)骨架的偶極矩也能提高聚酰亞胺的介電常數(shù)。MAR等在聚酰亞胺分子鏈中引入羰基,制備的聚酰亞胺膜介電常數(shù)高達(dá)7.8。TONGH等以含羰基的二酐和二胺制備了一系列高介電常數(shù)3.99~5.23)和低介質(zhì)損耗因數(shù)(0.00307~0.00395)的芳族含羰基聚酰亞胺(CPI)薄膜,研究發(fā)現(xiàn),大偶極矩和較短重復(fù)單元的極性結(jié)構(gòu)的引入提高了聚酰亞胺的介電常數(shù)。

2.2.2添加高介電常數(shù)填料

通過在聚合物基質(zhì)中添加高介電常數(shù)的無機(jī)材料(金屬或金屬氧化物填料)或?qū)щ姴牧希ㄈ缡┨盍希┛芍苽渚哂懈?/span>介電常數(shù)的復(fù)合膜。常用方法有:(1)加入金屬或金屬氧化物填料。CHIQG等通過水熱法制備了純鈣鈦礦立方結(jié)構(gòu)的納米級鈦酸銅鈣(CCTO)陶瓷顆粒。利用水熱法在納米CCTO表面沉積氧化鐵(Fe3O4)粒子,并制備相應(yīng)的納米CCTO-Fe3O4/PI雜化膜(見圖3)。研究發(fā)現(xiàn),在外加磁場下退火的納米CCTO-Fe3O4/PI雜化膜的介電常數(shù)顯著提高。當(dāng)納米CCTO-Fe3O4的體積分?jǐn)?shù)為12%時,在100Hz下測試發(fā)現(xiàn)雜化膜介電常數(shù)

達(dá)308,介質(zhì)損耗因數(shù)也較低(0.60)。

 

image.png 

LIUL等引入共價鍵合的BaTiO3@氧化石墨烯(BaTiO3@GO)雜化物,制備了新型高介電常數(shù)聚酰亞胺復(fù)合膜。含有8%BaTiO3@RGO的BaTiO3@RGO/PI復(fù)合膜在100Hz時具有高介電常數(shù)285)和低介質(zhì)損耗因數(shù)(0.25)的性能特征。LUHF等采用原位聚合法制備了銀納米片(AgNSs)填充的聚酰亞胺基復(fù)合膜,隨著AgNSs含量的增加(0~10%),復(fù)合膜在100Hz下測得的介電常數(shù)3.18提高到4.55。這種現(xiàn)象可以用界面演化機(jī)制來解釋。如圖4所示,部分結(jié)晶的分子鏈在純PI矩陣中隨機(jī)排列。當(dāng)基體中AgNSs含量較少時,由其較高的表面能吸附并固定聚合物鏈,隨著AgNSs含量(<10%)的增加,PI和AgNSs之間逐漸形成界面區(qū)域,使材料的介電常數(shù)逐漸增大。

image.png 

2)加入石墨烯填料。FANGX等將官能化的石墨烯納米顆粒引入聚酰亞胺基體中,通過原位聚合形成聚酰亞胺復(fù)合薄膜,其介電常數(shù)36.9)約為純PI聚合物介電常數(shù)12.5倍,且具有極低的介質(zhì)損耗因數(shù)(0.0075)。聚苯胺修飾還原氧化石墨烯/聚酰亞胺(RGO@R-PANI/PI)納米復(fù)合膜的介電常數(shù)最高為25.84(1kHz)。

2.2.3熱老化

研究表明,PI薄膜在經(jīng)過熱降解后產(chǎn)生苯胺等帶有自由基的低分子量極性分子,會對薄膜的介電常數(shù)產(chǎn)生影響。YANGY等[41]將聚酰亞胺膜放在3kV交流電壓(50Hz)下老化,隨著老化時間的增加,薄膜氧化降解產(chǎn)生羧酸、酮和醛等化合物,導(dǎo)致膜的介電常數(shù)增加。LIL等研究了聚酰亞胺薄膜在空氣和鹽水中的熱降解與其介電常數(shù)之間的相關(guān)性。自由基和極性基團(tuán)的產(chǎn)生導(dǎo)致聚酰亞胺薄膜的介電常數(shù)顯著提高,但氯化鈉在鹽水中的溶解量對聚酰亞胺的介電常數(shù)影響不大。此外,ZHANGL等進(jìn)一步證實(shí)了熱老化對介電常數(shù)

影響。目前,提高聚酰亞胺膜介電常數(shù)常用的方法是在基體中添加高介電常數(shù)的填料,雖然在一定程度上可提高薄膜的介電常數(shù),但介質(zhì)損耗也有所增加。通過增加聚合物基團(tuán)極性等本征改性的方法是今后研究的重點(diǎn)。

3、聚酰亞胺介質(zhì)損耗調(diào)控進(jìn)展

對于絕緣材料來說,一般要求介質(zhì)損耗越小越好,否則會消耗更多的電能,引起材料本身發(fā)熱,從而加速材料老化。引入氟元素不僅能降低介電常數(shù),還能降低介質(zhì)損耗。MAOX等將聚四氟乙烯(PTFE)添加到聚酰亞胺基體中,有效降低了雜化薄膜的介質(zhì)損耗。該工藝的要點(diǎn)是將水溶性聚酰胺酸銨鹽與聚四氟乙烯水溶液乳液共混,形成穩(wěn)定的懸浮液溶液,使聚四氟乙烯均勻分散在聚酰胺酸銨鹽中,最終得到PI雜化薄膜。

WANGX等制備氟化石墨烯(FSG)/聚酰亞胺雜化膜,其介質(zhì)損耗因數(shù)低,接近純聚酰亞胺薄膜的0.011。YANGSY等[21]制備的氟化聚酰亞胺介質(zhì)損耗因數(shù)低至0.00127~0.00450。實(shí)驗(yàn)結(jié)果表明,聚合物鏈中的-CF3基團(tuán)可有效降低聚合物的介質(zhì)損耗。QIANC等合成了含有大側(cè)基的含氟聚酰亞胺(見圖5),其對應(yīng)薄膜的介電常數(shù)和介質(zhì)損耗因數(shù)在10kHz時分別為2.09和0.0012,遠(yuǎn)低于商業(yè)Kapton薄膜(介電常數(shù)3.40)。達(dá)邁公司在PI基體加入含氟樹脂,得到的復(fù)合薄膜介質(zhì)損耗因數(shù)降低至0.006;LG化學(xué)公布的具有三層結(jié)構(gòu)的含氟聚酰亞胺膜,介質(zhì)損耗因數(shù)為0.001~0.007

1MHz)。

image.png 

非氟聚酰亞胺介質(zhì)損耗的研究也有報道。YANGK等制備了多孔氮化硼(BN)/聚酰亞胺復(fù)合薄膜,其介質(zhì)損耗極低,在高頻下介質(zhì)損耗因數(shù)接近于0(<0.002)。一般來說,在聚合物基體中加入高介電的無機(jī)填料,介電常數(shù)和介質(zhì)損耗都會增加,但是BN/PI復(fù)合薄膜顯示出非常低的介質(zhì)損耗,這歸因于BN/PI復(fù)合膜內(nèi)部三維互聯(lián)的BN網(wǎng)絡(luò)可以防止介電材料的集體極化,從而減少因極化作用而消耗能量。QIUG等[51]用聚酰亞胺微球替代無機(jī)物填料制備低介電常數(shù)的聚酰亞胺,在聚酰亞胺混合物中加入10%~50%的聚酰亞胺微球,所得聚酰亞胺共混膜的介電常數(shù)2.26~2.48(1MHz),介質(zhì)損耗因數(shù)為0.00663~0.00857(1MHz)。在混合物中加入聚酰亞胺微球,相當(dāng)于降低極化率密度,增加自由體積,降低極化效應(yīng),減小了極化弛豫,使得介質(zhì)損耗降低。

日東電工株式會社通過超臨界萃取工藝制備的多孔聚酰亞胺膜,孔徑在10μm以下,介質(zhì)損耗因數(shù)低至0.0017(10GHz);株式會社有澤制作所以及臺虹科技制備了含有類似芳酯結(jié)構(gòu)的聚酰亞胺,其介質(zhì)損耗因數(shù)分別為0.003和0.0021。

 

4、結(jié)束語

研究人員在聚酰亞胺介電性能的調(diào)控方面已經(jīng)取得了顯著的成績,有效推動了電子、半導(dǎo)體及高溫電容器等領(lǐng)域的發(fā)展。目前研究認(rèn)為可從聚酰亞胺基團(tuán)結(jié)構(gòu)的極性、自由體積及孔結(jié)構(gòu)等角度出發(fā),實(shí)現(xiàn)對聚酰亞胺膜介電常數(shù)的調(diào)控。但現(xiàn)階段對聚酰亞胺膜結(jié)構(gòu)與其介質(zhì)損耗(特別是高頻條件下)的相關(guān)性研究還沒有形成系統(tǒng)的理論。一般而言,含氟聚酰亞胺中的極化作用小,介質(zhì)損耗低;非氟聚酰亞胺中的微孔結(jié)構(gòu)、低極性基團(tuán)可降低介質(zhì)損耗。

高介電低損耗的聚酰亞胺具有良好的儲能能力,未來在高溫電容器及電氣領(lǐng)域?qū)l(fā)揮重要作用。難點(diǎn)是薄膜具有高介電常數(shù)的同時,很難具有較低的介質(zhì)損耗。未來的研究方向可以從微觀角度出發(fā),如構(gòu)建介電性能理論模型,設(shè)計(jì)出具有高介電低損耗的聚酰亞胺。

聚酰亞胺材料在5G時代有望發(fā)揮巨大作用。5G通信采用的是毫米波波段,優(yōu)點(diǎn)是傳輸速度快,缺點(diǎn)是穿透力弱。故材料介電常數(shù)越低,信號傳輸越快,信號延遲越低,信號保真度越高。且5G設(shè)備功耗大,產(chǎn)生的熱量大,因此需要高的導(dǎo)熱性。低介電、低損耗、高導(dǎo)熱的聚酰亞胺膜可以滿足這一性能要求。因此,聚酰亞胺膜材料將成為未來5G高頻印制電路板(PCB)、柔性顯示等領(lǐng)域的重要基材,其相關(guān)制品將繼續(xù)朝集成化、更高性能化、柔性化、智能化方向發(fā)展。


北京中航時代儀器設(shè)備有限公司
  • 聯(lián)系人:石磊
  • 地址:北京市房山區(qū)經(jīng)濟(jì)技術(shù)開發(fā)區(qū)1號
  • 郵箱:zhsdyq@163.com
  • 傳真:86-010-80224846
關(guān)注我們

歡迎您關(guān)注我們的微信公眾號了解更多信息

掃一掃
關(guān)注我們
版權(quán)所有 © 2025 北京中航時代儀器設(shè)備有限公司 All Rights Reserved    備案號:京ICP備14029093號-1    sitemap.xml
管理登陸    技術(shù)支持:化工儀器網(wǎng)    
蜜桃成人365av_91精品在线观_久久久久久网址_日韩免费精品视频
久久机这里只有精品| 一区二区日韩av| 亚洲视频免费观看| 国产成人a级片| 国产精品家庭影院| 91久久国产最好的精华液| 午夜久久久久久久久久一区二区| 欧美精品成人一区二区三区四区| 国产美女精品在线| 国产精品国模大尺度视频| 日本精品一区二区三区高清| 天天影视色香欲综合网老头| 久久久久国产精品麻豆ai换脸| 99视频精品在线| 日日骚欧美日韩| 中文字幕欧美日韩一区| 91麻豆精品国产91久久久久| 国产99久久久国产精品潘金| 亚洲动漫第一页| 亚洲国产高清不卡| 在线电影国产精品| 一本色道久久综合狠狠躁的推荐| 九色综合国产一区二区三区| 亚洲欧美国产三级| 国产亚洲欧美在线| 欧美日韩国产小视频| 精品国产凹凸成av人网站| 欧美一区二区三区婷婷月色| 欧美成人女星排行榜| 国产激情一区二区三区四区 | 亚洲美女在线国产| 91精品国产黑色紧身裤美女| 成人网男人的天堂| 蜜桃久久av一区| 亚洲国产va精品久久久不卡综合| 中文久久乱码一区二区| 精品乱人伦小说| 欧美一级一区二区| 欧美日韩国产片| 在线免费视频一区二区| 99精品欧美一区二区三区小说| 久久69国产一区二区蜜臀| 性做久久久久久| 一二三区精品视频| 亚洲美腿欧美偷拍| 亚洲色图另类专区| 中文字幕一区在线观看视频| 国产精品久久久久久久裸模| 亚洲国产精品v| 国产精品天天摸av网| 日本一区二区三区四区在线视频| 精品少妇一区二区三区日产乱码| 91精品国产一区二区三区| 欧美日韩高清一区二区| 欧美日韩dvd在线观看| 欧美另类变人与禽xxxxx| 在线不卡的av| 日韩精品综合一本久道在线视频| 日韩欧美123| 国产亚洲一区二区三区| 国产精品蜜臀在线观看| 亚洲欧洲日韩在线| 亚洲永久免费视频| 日韩精品福利网| 久久99精品一区二区三区| 韩日欧美一区二区三区| 成人免费va视频| 色哟哟国产精品免费观看| 欧美视频第二页| 日韩免费高清av| 国产日韩欧美精品综合| 亚洲人成7777| 免费在线观看一区二区三区| 国产高清无密码一区二区三区| 91丨porny丨在线| 欧美一区二区视频观看视频| 久久美女艺术照精彩视频福利播放| 国产精品妹子av| 日韩国产欧美视频| 成人av高清在线| 欧美色视频一区| 久久综合色天天久久综合图片| 亚洲免费伊人电影| 亚洲欧美日韩中文播放| 亚洲丶国产丶欧美一区二区三区| 日本网站在线观看一区二区三区| 美国三级日本三级久久99| 国产suv精品一区二区三区| 色哟哟欧美精品| 精品国产乱码久久久久久浪潮| 国产精品传媒入口麻豆| 美日韩一区二区三区| 91猫先生在线| 欧美成人性福生活免费看| 综合分类小说区另类春色亚洲小说欧美| 亚洲图片欧美色图| 国产一区免费电影| 欧美日韩成人在线| 国产精品女上位| 另类小说一区二区三区| 在线观看一区二区精品视频| 久久婷婷一区二区三区| 亚洲18色成人| 色婷婷国产精品| 久久精品人人爽人人爽| 奇米影视7777精品一区二区| 色综合 综合色| 久久综合色之久久综合| 婷婷综合五月天| 在线免费av一区| 国产精品国产三级国产专播品爱网| 美女脱光内衣内裤视频久久网站| 色婷婷国产精品| 中文一区在线播放| 狠狠色狠狠色合久久伊人| 777色狠狠一区二区三区| 亚洲动漫第一页| 欧美性色黄大片| 亚洲女子a中天字幕| av资源站一区| 国产精品欧美久久久久一区二区 | 久久激情综合网| 欧美男人的天堂一二区| 亚洲另类中文字| 99精品国产视频| 中文字幕一区二区三区不卡 | 欧美a级理论片| 欧美手机在线视频| 亚洲视频你懂的| 91亚洲国产成人精品一区二区三| 国产精品色哟哟| 99精品在线观看视频| 亚洲黄色尤物视频| 欧美亚洲动漫另类| 日日摸夜夜添夜夜添精品视频| 在线成人av影院| 久久国产婷婷国产香蕉| 国产亚洲欧美一区在线观看| 成人国产电影网| 亚洲精品欧美专区| 欧美三级蜜桃2在线观看| 亚洲国产视频一区| 91精品国产麻豆| 国产成人精品1024| 日韩理论片在线| 欧美亚洲国产bt| 国模一区二区三区白浆| 国产精品视频在线看| 在线一区二区观看| 视频一区欧美精品| 久久久久久免费| 色婷婷香蕉在线一区二区| 三级不卡在线观看| 久久九九99视频| 91欧美一区二区| 蜜臀av性久久久久蜜臀aⅴ流畅| 精品盗摄一区二区三区| 色哟哟在线观看一区二区三区| 视频一区中文字幕| 亚洲欧洲日韩在线| 91精品综合久久久久久| 成人综合婷婷国产精品久久免费| 亚洲激情综合网| 2020国产精品| 欧美影视一区在线| 国产精品资源网站| 亚洲成av人片在www色猫咪| 久久精品在这里| 欧美男女性生活在线直播观看| 成人一区二区在线观看| 欧美a级理论片| 亚洲精品乱码久久久久| 26uuu亚洲婷婷狠狠天堂| 在线视频亚洲一区| eeuss鲁片一区二区三区在线观看| 亚洲www啪成人一区二区麻豆| 国产欧美精品一区二区色综合 | 欧美一二三区在线观看| 国产999精品久久| 日韩成人dvd| 一区二区三区四区不卡视频| 国产三级精品三级| 欧美一区二区精品久久911| 91激情五月电影| 本田岬高潮一区二区三区| 国产一区二区影院| 美女一区二区视频| 五月婷婷欧美视频| 亚洲精品你懂的| 亚洲品质自拍视频| 国产精品嫩草影院av蜜臀| 欧美经典一区二区三区| 欧美大肚乱孕交hd孕妇| 欧美猛男gaygay网站| 91精品福利视频| 91麻豆国产精品久久| 波多野结衣视频一区| av亚洲产国偷v产偷v自拍| 国产精品中文欧美| 国产成人免费9x9x人网站视频|